$5.84(\mathrm{~d}, \mathrm{I} \mathrm{H}, J=19.2 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}), 5.96(\mathrm{~d}, 1 \mathrm{H}, J=19.2 \mathrm{~Hz}$, $\mathrm{CH}=\mathrm{CH}), 6.51(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C})$.
(\pm)-Jatrophone (1), With the same procedure as that given for epijatrophone (22), $0.020 \mathrm{~g}(0.027 \mathrm{mmol})$ of the vinyl triflate 4 afforded $0.002 \mathrm{~g}(23.7 \%)$ of jatrophone as a white crystalline solid. All spectral data matched that reported in the literature: ${ }^{4}$ IR (neat) $\vee 3000-2800$, 1696 (CO), 1659 (CO), 1621 (C=C), 1450, 1398, 1371, 1231, 1160, $1107,1063 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.06(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}\right), 1.21\left(\mathrm{~s}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 1.33\left(\mathrm{~s}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), \mathrm{I} .72(\mathrm{~d}, 3 \mathrm{H}$, $J=0.7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}$), $1.84\left(\mathrm{dd}, 1 \mathrm{H}, J=5.7,13.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.85(\mathrm{~d}$, $3 \mathrm{H}, J=1.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}$), 2.12 (dd, $1 \mathrm{H}, J=5.8,13.6 \mathrm{~Hz}, \mathrm{CH}_{2}$), 2.37 (dd, $\left.1 \mathrm{H}, J=0.7,14.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.83\left(\mathrm{~d}, 1 \mathrm{H}, J=14.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, 2.92-2.96 (m, I H, CHCH3), $5.77-5.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{C}, \mathrm{CH}=\mathrm{CCH} 3)$,
$5.97(\mathrm{~d}, 1 \mathrm{H}, J=16.3 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}), 6.42(\mathrm{~d}, 1 \mathrm{H}, J=16.3 \mathrm{~Hz}$, $\mathrm{CH}=\mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.13,18.98,20.78,26.92,30.42,36.64$, $38.35,41.24,42.47,\left(\mathrm{CH}, \mathrm{CH}_{2}, \mathrm{CH}_{3}\right), 99.78$ (CO), $112.42,123.76$, 128.73, 137.09, 141.77, 147.13, 159.04, 183.25 (C=C), $202.03(\mathrm{C}=0)$, $203.93(\mathrm{C}=\mathrm{O})$; HRMS for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3}$, calcd 312.1726, found 312.1725 .

Acknowledgment. Support for this research by the National Institutes of Health (Grant GM35694) is gratefully acknowledged.

Supplementary Material Available: Experimental details for the reactions reported in Scheme IV (5 pages). Ordering information is given on any current masthead page.

Effect of Allylic Substituents on the Face Selectivity of Diels-Alder Reactions of Semicyclic Dienes

S, C, Datta, ${ }^{1 \mathrm{la}}$ R, W, Franck, ${ }^{*, 1 \mathrm{lb}}$ R, Tripathy, ${ }^{1 \mathrm{lb}}$ G. J. Quigley, ${ }^{16}$ L, Huang, ${ }^{16}$ S, Chen, ${ }^{16}$ and A, Sihaed ${ }^{1 \mathrm{c}}$
Contribution from the Department of Chemistry, Fordham University, Fordham Road, Bronx, New York 10458, Department of Chemistry, Hunter College/CUNY, 695 Park Avenue, New York, New York 10021, and Enraf Nonius S.C., 390 Central Avenue, Bohemia, New York 11716. Received April 30, 1990

Abstract

Vinylcyclohexenes substituted allylically on the cyclohexene ring were examined as substrates in the Diels-Alder cycloaddition. In the octalin cycloaddition products, the relative stereochemistry of the one angular hydrogen relative to that of the allylic substituent was examined as a measure of the control of face selectivity by the substituent. In the 17 examples reported where the competition for control was between $\mathrm{OH}-\mathrm{H}, \mathrm{MeO}-\mathrm{H},(\mathrm{TMS}) \mathrm{O}-\mathrm{H}, \mathrm{OH}-\mathrm{CH}_{3}, \mathrm{OMe}-\mathrm{CH}_{3}$, and (TMS)O-CH3, the simplest rationale was that size alone controlled the face selectivity of the Diels-Alder cycloaddition.

Introduction

High regiospecificity and stereoselectivity along with the simultaneous creation of multiple chiral centers make the DielsAlder reaction an important process in organic synthesis. ${ }^{2}$ Heteroatom substitution at the allylic position of a diene has a pronounced effect on diastereofacial selection. Attempts have been made to rationalize the observed diastereoselectivity. ${ }^{3-8}$ Experiments involving the use of dienes with a stereogenic allylic

[^0]carbon can be divided into three categories. Acyclic dienes of type $1^{5-11}(X=O, N, S i)$ have essentially free rotation of the allylic

1

2

3

4
A substituted pyranose
center, while in cyclic dienes $2,{ }^{12} 3,{ }^{13}$ and 4^{14} the allylic substituents are restricted in their degree of conformational flexibility. Recent work at Hunter documented a series of Diels-Alder reactions using
(9) Trost, B. M.; Lee, D. C. J. Org. Chem. 1989, 54, 2275.
(10) (a) Gree, R.; Kessabi, J.; Mosset, P.; Martelli, J.; Carrie, R. Tetrahedron Lett. 1984, 25, 3697. (b) Kessabi, J. Thesis Dr. Illeme Cycle, L'Universite de Rennes, 1985. (c) Messager, J. C.; Toupe1, L. Acta Crystallogr., Sect. B: Struct. Sci. 1986, B42, 371.
(1I) Reitz, A. B.; Jordan, A. D., Jr.; Maryanoff, B. E. J. Org. Chem. 1987, 52, 4800.
(12) (a) Macaulay, J. B.; Fallis, A. G. J. Am. Chem. Soc. 1988, 110, 4074. (b) Naperstkow, A. M.; Macaulay, J. B.; Newlands, M. J.; Fallis, A. G. Tetrahedron Lett. 1989, 30, 5077. (c) Macaulay, J. B.; Fallis, A. G. J. Am. Chem. Soc. 1990, 112, 1136 . (d) Chung, W.-S.; Turro, N. J.; Srivastava, S.; Li, H.; le Noble, W. J. J. Am. Chem. Soc. 1988, 110, 7882.
(13) Fisher, M. J.; Hehre, W. J.; Kahn, S. D.; Overman, L. E. J. Am. Chem. Soc. 1988, 110, 4625.
(14) (a) Lipshutz, B. H.; Nguyen, S. L.; Elworthy, T. R. Tetrahedron 1988, 44, 3364. (b) Giuliano, R. M.; Buzby, J. H. Carbohydr. Res. 1986, 158, Cl. (c) Sun, K.-M.; Giuliano, R. M.; Fraser-Reid, B. J. Org. Chem. 1985 50, 4774. (d) Giuliano, R. M.; Buzby, J. H.; Marcopulos, N.; Springer, J. P. J. Org. Chem. 1990, 55, 3555.

Table I. Relative Topicities of the Diels-Alder Reaction of Different Dienophiles with Semicyclic Dienes Bearing a Stereogenic Allylic Carbon

entry	diene	dienophile	solvent	temp, ${ }^{\circ} \mathrm{C}$	product		yield, \%
					syn (\%)	anti (\%)	
1	69	8	benzene	25	11a (63)	12a (37)	73.5
2	6a	8	methanol	25	(36)	(64)	a
3	6a	8	DMF	25	(17)	(83)	a
4	6b	8	benzene	25	11b (11)	12b (89)	82.4
5	6b	8	DMF	25	(10)	(90)	a
6	6 c	8	benzene	25	11c (9)	12c (91)	70.5
7	6a	9	benzene	reflux	14a (20)	15a (80)	82.7
8	6a	9	$\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{\text {b }}$	25	(19)	(81)	a
9	6 c	9	benzene	reflux	14b (8)	15b (92)	56
10	6 c	9	$\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{\text {b }}$	25	$\left({ }^{(9)}\right.$	(91)	a
11	6a	10	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$: THF	-78 to room temp	16 (100)	(0)	81
12	7a	8	benzene	25	17a ${ }^{\text {c }}$ (92)	18a (8)	72.2
13	7a	8	DMF	25	(45)	(55)	a
14	7b	8	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	25	17b (26)	18b (74)	65.5
15	7b	8	benzene	50	17b (25)	18b (75)	a
16	7c	8	benzene	25	17e (23)	18c (77)	50.4
17	7c	8	DMF	25	(17)	(83)	a

${ }^{a}$ In these cases, the ratios were determined from distinct peaks in the $300-\mathrm{MHz}$ NMR of the reaction mixture, and isolated yields of pure adducts were not determined. ${ }^{b}$ Under 6 -kbar pressure. ${ }^{c}$ Unstable, isolated as the lactone 19.
acyclic dienes of type 1 , and we have shown that a simple theoretical argument limited to the diene alone cannot explain the observed diastereoselectivity. Only a complete evaluation of the transition state shows promise in prediction of face selectivity in acyclic cases. ${ }^{15}$ For example, Hehre put forward a theory ${ }^{4}$ based on the electrostatic attraction of the hetero atom ($\mathrm{X}=\mathrm{O}, \mathrm{N}$) and the dienophile. This theory predicts a syn facial attack (syn to heteroatom) on the face of all classes of dienes. This rationalization failed to account for the experimental results with diene classes 1-4. In an interesting paper, ${ }^{13}$ Overman and Hehre evaluated the face selectivity of dienes of type $3(n=2)$ and obtained largely anti selectivity.

Thus, they modified the original electrostatic theory and put forward an argument where the electrostatic effect between the carbonyl of the dienophile and the allylic heteroatom was repulsive. Fallis, with cyclopentadienes, and le Noble, with an adamantanethione dienophile, have independently interpreted their results according to a version of Cieplak's theory, namely that face selectivity is determined by a transition-state bonding interaction between a developing σ^{*} orbital and the most electron-donating allylic substituent. ${ }^{12}$ Our group has been studying dienes of type 3 ($n=3$), and we now describe our results, which are complementary to those of Hehre and Overman, but we present a rationalization based solely on steric arguments.

Results

The semicyclic diene 3 -vinyl-2-cyclohexen-1-ol (6a) ${ }^{16}$ was prepared from 3 -vinylcyclohexenone (5) ${ }^{17}$ by reduction with LiAlH_{4}, Protection of the resulting hydroxy group by standard methods furnished 3-methoxy-1-vinylcyclohexene (6b) and 3-[(trimethylsilyl)oxy]-1-vinylcyclohexene (6c) (eq 1). Grignard

reaction of MeMgBr and 3 -vinylcyclohexenone (5) afforded 3-vinyl-1-methylcyclohexenol (7a) (eq 1). Methyl- as well as si-lyl-protected dienes 7 b and 7 c were prepared from 7a by standard methods.

[^1]A series of Diels-Alder reactions was then carried out in our laboratory by using dienophiles N-phenylmaleimide (NPM) (8), dimethyl acetylenedicarboxylate (9), and N-phenyltriazolinedione (10) with the dienes $6 a-c$ and $7 a-c$ with different solvents and reaction conditions (see Table I). The first entry records the reaction of 3 -vinyl-2-cyclohexen-1-ol (6a) with N-phenylmaleimide (8) at room temperature. ${ }^{1} \mathrm{H}$ NMR of the crude reaction mixture showed the formation of three products. The major product was the adduct 11 a (eq 2), which slowly converts into the tricyclic

lactone 13. Similar spontaneous lactonization has also been observed earlier by us and other workers ${ }^{5 c, 8,11,13}$ when free hydroxy dienes are subjected to Diels-Alder reaction with NPM (8). The crude reaction mixture was refluxed in benzene for complete lactonization of the adduct 11a, and the syn to anti ratio of 1.7:1 was determined from the ${ }^{1} \mathrm{H}$ NMR of the mixture of lactone (syn) and alcohol (anti). The two products 12 a and 13 were separated by chromatography. However, adduct 11a can be isolated by freezing the concentrated reaction mixture where upon 11a crystallized out as a white solid. When the adduct 11a was treated with $\mathrm{MeOH} / \mathrm{H}^{+}$, it underwent rapid cyclization to the tricyclic lactone 13. This cyclization strongly suggests that the adduct 11a was formed by the attack of the dienophile on the face of the diene that is syn to the hydroxy group. The ${ }^{1} \mathrm{H}$ NMR data also are consistent with syn stereochemistry for the adduct 11a where proton H_{a}, resonating at $\delta 4.34$, appears as a broad singlet, indicating a very small (cis) coupling constant between H_{a} and H_{b}. On the other hand, the same proton in the minor adduct 12a appears as a broad multiplet, indicating a trans coupling between H_{a} and H_{b}. Thus, minor adduct 12a is formed by the attack of the dienophile from the face anti to the hydroxy group. Adduct 12a did not cyclize on treatment with $\mathrm{MeOH} / \mathrm{H}^{+}$at room temperature or under reflux. We assign both adduct 11a and 12a as endo products because of the facile cyclization of one of the adducts (11a) and because both have comparable coupling constants between H_{b} and $\mathrm{H}_{\mathrm{c}}(J=9.2 \mathrm{~Hz}$ for 11a and 8.2 Hz for 12a). There was a dramatic reversal in the diastereomeric ratio
of syn (11a) to anti (12a) product by changing the reaction solvent from benzene to MeOH and DMF (entries 2 and 3). Entry 4 records the reaction of 3 -methoxy-1-vinylcyclohexene ($\mathbf{6 b}$) with NPM at room temperature in benzene, which showed facial selectivity opposite to that of free diene alcohol 6a. In this case, the anti adduct $\mathbf{1 2 b}$ clearly predominates and the facial selectivity is not affected significantly by changing the solvent from benzene to DMF (entry 5). The stereochemistries of $\mathbf{1 1 b}$ and 12 b were proved by the similarity of their ${ }^{1} \mathrm{H}$ NMR data to that of 11a and 12a. Each stereochemical series exhibited a common coupling pattern for the methine proton H_{a}. For the anti adduct 12b, the methine proton H_{a} showed the characteristic broad ddd ($J=4.58$, $9.84,11.0 \mathrm{~Hz}$), whereas for the syn compound the methine proton H_{a} appeared as a broad singlet. Moreover, methylation of the anti adduct alcohol 12a with $\mathrm{MeI} / \mathrm{Ag}_{2} \mathrm{O} / \mathrm{K}_{2} \mathrm{CO}_{3}$ gave methyl ether 12b.

Silyl-protected diene $6 \mathbf{c}$ also undergoes cycloaddition with NPM slowly, and the facial selectivity is identical with that of methyl ether diene $\mathbf{6 b}$ (entry 6). In this case, the two diastereomeric products appeared as a homogeneous material when chromatographed and were not separable. ${ }^{1} \mathrm{H}$ NMR of the crude sample showed a coupling pattern for the methine proton H_{a} (ddd, $J=$ $4.7,9.4,11.2 \mathrm{~Hz}$) that clearly indicated that the major diastereoisomer 12c is an anti adduct. The corresponding proton for minor adduct 11 c appeared as a broad singlet. The adduct mixture was easily hydrolyzed by $\mathrm{MeOH} / \mathrm{H}^{+}$to give the anti alcohol 12 a as the major product with a detectable amount of tricyclic lactone 13.

Entry 7 records the reaction of the alcohol diene 6a with dimethyl acetylenedicarboxylate (9) at reflux temperature in benzene. The reactions are slow at room temperature in the case of acetylenic dienophiles. At reflux, some aromatic products were observed in the 'H NMR. When the reaction was carried out in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under high pressure (6 kbar), the adducts were clean and free from aromatic product (entry 8) and there was no significant change in the diastereomeric ratio. Two major products (eq 3) were separated by chromatography. The stereochemistry

14
15
$a, R=H ; b, R=T M S$
for both of the adducts was determined from their ${ }^{1} \mathrm{H}$ NMR spectra. The resonance for the methine proton H_{a} for the major adduct 15 a appears at $\delta 3.51$ as a broad multiplet, whereas the same proton resonates at $\delta 4.11$ (as a broad singlet) in the minor compound 14a.

The silyl protection of the diene 6 c further increased the amount of anti adduct $\mathbf{1 5 b}$ (entry 9). The stereochemistries for both the minor and major adducts $\mathbf{1 4 b}$ and $\mathbf{1 5 b}$ were secured by ${ }^{1} \mathrm{H}$ NMR correlation with the alcoholic adducts 14a and 15a. The resonance for the methine proton H_{a} appears as a doublet of a triplet ($J=$ $10.4,4 \mathrm{~Hz}$) for the major adduct $\mathbf{1 5 b}$, whereas in the minor isomer 14b the same proton appears as a broad singlet. Our results are also consistent with the observations of Roush et al. for acetylenic adducts. ${ }^{18}$ Moreover, the major adduct 15b was hydrolyzed by $\mathrm{MeOH} / \mathrm{H}^{+}$to adduct 15 a , which shows the major product 15 b resulted from an anti attack. Reaction of the diene 6a with 4-phenyl-1,2,4-triazoline-3,5-dione (10) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ THF at low temperature gave a single adduct 16 as a white solid (entry 11). The allylic proton H_{b} resonates as a doublet ($J_{\mathrm{ab}}=8.8 \mathrm{~Hz}$), thus indicating the adduct resulting from an anti attack (eq 4). The

[^2]

Figure 1. Perspective view of the tricyclic lactone 19.
methine proton H_{a} also appears as a broad multiplet, which is also another characteristic of the anti adducts.

The dienes ($7 \mathrm{a}-\mathrm{c}$) bearing both methyl and hydroxy or alkoxy groups at the allylic position also gave interesting results. The reaction of the diene 7a with NPM at room temperature in benzene resulted in the formation of a crystalline solid that separated out after stirring overnight. The compound was identified as the tricyclic lactone 19 (eq 5) on the basis of NMR evidence and X-ray crystallography (Figure 1).

Along with the tricyclic lactone 19, a minor product was isolated from the mother liquor that was shown to be the anti alcohol 18a (attack anti to the hydroxy group) (entry 12). This minor product was assumed to be endo and anti 10 the OH group because of its comparable ${ }^{1} \mathrm{H}$ NMR data with the adduct 12a. Surprisingly, when the adduct 18 a was treated with $\mathrm{MeOH} / \mathrm{H}^{+}$and refluxed for a prolonged period of time (48 h), tricyclic lactone 19 was obtained. This result is explained by the loss of stereochemistry at the tertiary alcohol center by acid-catalyzed carbonium ion formation followed by regeneration of a more stable product. This experiment ruled out the possibility of 18a being an exo product, which could not have lactonized. When the solvent was changed from benzene to DMF (entry 13), the diastereomeric ratio changed dramatically from $92: 8$ to $45: 55$. Thus, the more polar solvent favors the attack of the dienophile anti to the hydroxyl group.

The reaction of the diene 7b with NPM was extremely slow in benzene at room temperature. The same reaction was carried out in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under high pressure (6 kbar), which gave a mixture of two products in a ratio of $3: 1$ (entries 14 and 15). The cycloadducts were separated by chromatography, and the stereochemistry of both the adducts was assigned from the correspondence of their ${ }^{1} \mathrm{H}$ NMR spectra with other members of the series. An X-ray crystallographic analysis (Figure 2) of major, anti to OMe , adduct $\mathbf{1 8 b}$ confirmed our assignment.

Entry 16 shows the reaction of the silylated diene 7c with NPM, and two adducts were obtained in a ratio of 3.3:1. The products 17c and 18c were not separable by chromatography, and the stereochemistry was elucidated on the basis of their ready con-

Figure 2. Perspective view of the cycloadduct 18b.
version to tricyclic lactone 19 and alcohol 18a by treatment with MeOH and a trace of acid. The isolation of syn to oxygen isomer 17c, which then lactonizes very easily, excludes the possibility that 18a and 18c are syn isomers. When the reaction was run in DMF, there was a slight increase of the anti product 18c (entry 17).

More recently, Kawamata et al. have demonstrated that the reaction of the diene 6 d with methyl vinyl ketone (MVK) (20) gave different regio- and stereoisomeric products 21-24 at different temperatures ${ }^{19}$ as shown in Scheme I. At $150^{\circ} \mathrm{C}$, the predominant product was the exo-anti adduct 21 , whereas at $110^{\circ} \mathrm{C}$, the endo-anti adduct 24 was formed as the major product. In both of the experiments, the regioisomeric exo adduct 22, where the acetyl group of the dienophile is distal to the allylic substituent, was formed as the minor adduct and exhibited anti stereochemistry.

Discussion

In acyclic dienes, experimentation ${ }^{5-12}$ and molecular orbital theory ${ }^{15}$ suggested that the face selectivity induced by allylic substituents was due to a balance of forces. Thus, in the transition state, the allylic substituent was rotated so that the heteroatom was essentially coplanar with the diene, with the anti-coplanar form preferred to the syn-coplanar rotamer. Then, the preferred face approached by the dienophile was that where minimum steric repulsions between diene and dienophile existed. In the cases where the allylic substituent is constrained as part of a ring system, the syn-coplanar orientation of the heteroatom is not accessible. Thus, in our experiments, we postulate that there are four principal transition states, $\mathbf{2 5}$ syn and anti, where the oxygen is pseudoe-

25 anti

26 and

25 syn

26 syn
quatorial to the cyclohexene, and 26 syn and anti, where the oxygen is pseudoaxial. We suggest that the determining effect is the rather weak interaction of the substituent with the vinyl hydrogen of N-phenylmaleimide.

Applying molecular orbital results obtained for acyclic dienes, ${ }^{15}$ we postulate that the transition states 26 syn and anti will have higher energies of activation because of unfavorable interactions of the $\mathrm{C}-\mathrm{O}$ function parallel to the developing bonds in the transiiion state. We therefore focus on $\mathbf{2 5}$ syn and anti using steric effects alone as the basis for selectivity. Thus, for dienes with

Scheme I

Table II. Comparison of A with n Values

entry	gP	A	n
1	H	0	<3
2	OH	0.5	6.3
3	OMe	0.6	9.5
4	Me	1.7	8.5

the methyl carbon shown replaced by H , the face selectivity will be determined by the size of the oxygen substituent. When the groups are H vs OH in a non-hydrogen-bonding solvent, the syn face is slightly favored (1:7:1). When a hydrogen-bonding solvent is used, we postulate that the OH becomes a bulkier group and the anti face is preferred (4:1). If electrostatic repulsions ${ }^{13}$ were the force that favored anti product, then the use of polar solvents should reduce, not increase, the yield of anti material, just opposite to our observation. A further argument against the importance of electrostatic effects can be developed from the results of $\mathrm{Ka}-$ wamata et al. ${ }^{19}$ Thus, both adducts endo 24 and exo 22 have the same stereochemistry, carbonyl of the dienophile anti to the allylic acetate; yet, the ends of the MVK dienophile have opposite polarities. If an electrostatic effect of the allylic group were important, then one would expect 24 and 22 to have opposite face selectivities. Also, if the forces postulated in the Cieplak-Fallis rationale ${ }^{12 c}$ were controlling, then syn adducts should have prevailed without exception. A caveat here, as a reviewer notes, is that the geometry of our system may not be ideal for a dominant Cieplak effect. Hence, the observed decrease in syn product where steric effects increase is understandable. When the heterofunction is OMe , we suggest that the face syn to the OMe becomes less reactive because the OMe is a large group toward external approach. We argue that the currently popular use of A values ${ }^{13,20}$ which are a measure of the intramolecular size of a group interacting with a hydrogen across a cyclohexane ring, ${ }^{21}$ is inappropriate for evaluating the volume occupied by the OMe in blocking the approach of a dienophile. We believe a parameter such as the Vogtle-Forster n value ${ }^{22}$ (see Table II) is a better qualitative descriptor of the volume of a group in electroneutral intermolecular reactions. Fallis also favors this system of size estimation. ${ }^{12 c}$ When the allylic functions are Me vs OH , hydrogen bonding in DMF increases the size of the OH group so that the syn and anti reactivity are about equal; e.g., the solvated OH group is approximately the size of a Me. When the groups are Me and OMe , the reaction is quite slow and must be run at 6 kbar to obtain good yields.

We interpret this result by arguing that both methyl and methoxyl block diene reactivity, reducing the overall reactivity, but

[^3]that methoxy is larger than methyl, consistent with the ForsterVogtle descriptors. Interestingly, in the key Diels-Alder reaction in the total synthesis of a nogalamycin antibiotic, the face selectivity was controlled by a trimethylsilyloxy group being larger than a methyl group. ${ }^{23}$ However Paquette's result in the sterpuric acid series cannot be easily rationalized by considering carbomethoxyl larger than methyl. ${ }^{20}$

In summary, there is a balance of electronic and steric forces that control face selectivity in Diels-Alder transition states of semicyclic dienes, where steric effects seem to be dominant. The reactions lead to stereoselective syntheses of substituted octalins, hexalins, and masked aminocyclohexanols.

Experimental Section

NMR spectra were recorded on GE QE ($300-\mathrm{MHz}$) instruments with tetramethylsilane as the inlernal standard and CDCl_{3} as the solvent. Infrared spectra were recorded on a Perkin-Elmer 1310 spectrophotometer. Elemental analyses were performed by Spang Microanalytical Laboratory, Eagle Harbor, MI. The high-resolution mass spectra were obtained by the mass spectral facility at Rockefeller University, New York. Meling points were uncorrected and were determined on a Fisher-John melting point aparatus. Thin-layer chromatograms were done on precoated TLC sheets of silica gel $60 \mathrm{~F}_{254}$ (E. Merck) with potassium permanganate spray and/or short- and long-wave ultraviolet light to visualize the spots. PLC plates were prepared by using Kieselgel 60 PF254 (E. Merck), and chromatotron (radial chromatography) plates were prepared by using Kieselgel 60 PF254 gipshaltig (E. Merck). Flash chromatography was performed with silica gel ($230-400$ mesh) purchased from Aldrich Chemical Co.

3-Vinyl-2-cyclohexen-1-ol (6a). ${ }^{17}$ To a suspension of LiAlH_{4} (1.82 , 48 mmol) in anhydrous ether (50 mL) at $0^{\circ} \mathrm{C}$ was added dropwise a solution of 3 -vinylcyclohexenone ${ }^{16}$ ($3.5 \mathrm{~g}, 28.68 \mathrm{mmol}$) in anhydrous ether $(50 \mathrm{~mL})$. After the addition, the cooling bath was removed and the misture was stirred at room temperature for 5 h . The mixture was treated sequentially with ethyl acetate (3.7 mL) and 10% aqueous KOH (11 mL) and then stirred for 30 min . Then, the mixture was filtered, and the insoluble aluminum salt was repeatedly washed with ether. The combined filtrate was dried with anhydrous MgSO_{4}, and evaporation of the solvent furnished a colorless oil. The crude product was purified by distillation (bp $47-48{ }^{\circ} \mathrm{C}(0.01 \mathrm{mmHg})$ to give $3.1 \mathrm{~g}(87.5 \%)$ of 3 -vinyl-2-cyclohexen-1-ol (6 a): ' ${ }^{1}$) NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.39$ (dd, $J=10.74,17.54 \mathrm{~Hz},=\mathrm{CHC}=$), 5.8 (br s, $\mathrm{C}=\mathrm{CH}$), $5.24(\mathrm{~d}, J=17.48$ $\mathrm{Hz}, \mathrm{C}=\mathrm{C} H \mathrm{H}), 5.09(\mathrm{~d}, J=10.83 \mathrm{~Hz},=\mathrm{CH} H), 4.3(\mathrm{br} \mathrm{s}, \mathrm{CHOH})$, 2.3-1.4 (m, OH, $3 \mathrm{CH}_{2}$); IR (CHCl_{3}) 3595, 3410, 2925, 1650, 1610, 1440, $1050,855 \mathrm{~cm}^{-1}$.

3-Methoxy-1-vinylcyclohexene (6b), To a mixture of NaH (50% dispersion in mineral oil, $720 \mathrm{mg}, 15 \mathrm{mmol}$) and DMSO (5 mL) was added dropwise a solution of $6 \mathrm{a}(1.22 \mathrm{~g}, 9.83 \mathrm{mmol})$ in DMSO $(3 \mathrm{~mL})$. The mixture was stirred for a period of 1 h , after which $\mathrm{CH}_{3} \mathrm{I}(3.0 \mathrm{~mL}$, 45 mmol) was added dropwise and the resulting mixture was stirred overnight. The mixture was poured into water (50 mL) and extracted from EtOAc ($3 \times 20 \mathrm{~mL}$). The combined extract was washed with brine (20 mL) and dried over anhydrous MgSO_{4}. After the removal of solvent, the crude product was subjected to flash chromatography (petroleum ether/EtOAc, 8:2) to give 883 mg (65%) of 3 -methoxy- 1 -vinylcyclohexene (6b) as a colorless oil that was further purified by short-path distillation (bath temperature $70-75^{\circ} \mathrm{C}(20 \mathrm{mmHg})$): ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.4(\mathrm{dd}, J=10.76,17.53 \mathrm{~Hz},=\mathrm{CHC}=$), $5.84(\mathrm{br} \mathrm{s}$, $\mathrm{C}=\mathrm{CH}), 5.23(\mathrm{~d}, J=17.31 \mathrm{~Hz}, \mathrm{C}=\mathrm{CHH}), 5.07(\mathrm{~d}, J=10.76 \mathrm{~Hz}$, $=\mathrm{CH} H$), 3.90 (br s, CHOMe), 3.42 (s, OMe) 2.2 (m, 2 H), 1.88 (m, 2 H), 1.65 (m, 2 H); IR (CHCl_{3}) 2940, 2880, 1670, 1610, 1375, 1090 cm^{-1}; high-resolution mass calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}\left(\mathrm{M}^{+}\right) 138.1044$, found 138.1016.

3-[(Trimethylsilyl)oxy] 1 -vinylcyclohexene ($6 c$), BSA ($1.8 \mathrm{~mL}, 7.28$ mmol) was added dropwise to neat ice-cooled alcohol $6 \Omega(400 \mathrm{mg}, 3.22$ mmol), and after addilion, the cooling bath was removed. The mixture was stirred overnight. The silylated producl was purified by flash chromatography (petroleum ether/EtOAc, 9:1). 3-[(Trimethylsilyl)-oxy]-1-vinylcyclohexene (6 c) was isolated as a colorless oil $454 \mathrm{mg}, 71.9 \%$ ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.37$ (dd, $J=10.75 .17 .5 \mathrm{~Hz},=$ CHC=), 5.67 (br s, $\mathrm{C}=\mathrm{CH}$), $5.19(\mathrm{~d}, J=17.71 \mathrm{~Hz}, \mathrm{C}=\mathrm{CHH}$), 5.04 (d, $J=10.71 \mathrm{~Hz},=\mathrm{CH} H), 4.36(\mathrm{~m}, \mathrm{CHOSiMe})^{2}, 2.15(\mathrm{~m}, 2 \mathrm{H}), 1.91$ ($\mathrm{m}, 2 \mathrm{H}$), $1.63(\mathrm{~m}, 2 \mathrm{H}), .18(\mathrm{~s}, 9 \mathrm{H})$; $1 \mathrm{R}\left(\mathrm{CHCl}_{3}\right) 2945,2880,1610$, $1450,1070,1010 \mathrm{~cm}^{-1}$; high-resolution mass calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{OSi}\left(\mathrm{M}^{+}\right)$ 196.1284, found 196.1278.
(23) Kawasaki, M.; Matsuda, F.; Terashima, S. Tetrahedron 1988, 44, 5727

3-Vinyl-1-methyl-2-cyclohexen-1-ol (7a), To a solution of methylmagnesium bromide (5 mL of a 3 M solution in ether, 15 mmol) in dry THF (30 mL) was added dropwise at $0^{\circ} \mathrm{C}$ a solution of 3 -vinylcyclohexenone ($1.51 \mathrm{~g}, 12.37 \mathrm{mmol}$ in 15 mL of dry THF). After $1 \mathrm{~h}, 50 \%$ $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 mL) was added slowly. The mixture was brought to room temperature and extracted with ether ($3 \times 50 \mathrm{~mL}$). Combined organic extracts were washed with brine (30 mL) and dried over anhydrous MgSO_{4}. Evaporation of solvent gave an oil that was distilled under vacuum to furnish 3 -vinyl-1-methyl-2-cyclohexen-1-01 (7a) as a colorless liquid: $1.3 \mathrm{~g}, 76.5 \%$; bp $49^{\circ} \mathrm{C}\left(0.2 \mathrm{mmHg}^{2}\right)$; ${ }^{1} \mathrm{H}$ NR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.35$ (dd, $J=10.74,17.55 \mathrm{~Hz} ;=\mathrm{CHC}=$), 5.65 (br s, $\mathrm{C}=\mathrm{CH}), 5.24(\mathrm{~d}, J=17.56 \mathrm{~Hz}, \mathrm{C}=\mathrm{CHH}), 5.07(\mathrm{~d}, J=10.76 \mathrm{~Hz}$, $=\mathrm{CH} H), 2.2-2.07$ and $1.8-1.6\left(\mathrm{~m}, \mathrm{OH}, 3 \mathrm{CH}_{2}\right) ; 1 \mathrm{R}\left(\mathrm{CHCl}_{3}\right) 3600$, $3450,1610,1450,1380,1060 \mathrm{~cm}^{-1}$; high-resolution mass caled for C_{9} $\mathrm{H}_{14} \mathrm{O}\left(\mathrm{M}^{+}-15\right) 123.0809$, found 123.0806 .
3-Methoxy-3-methyl-1-vinylcyclohexene (7b), To a mixture of KH (35% dispersion in mineral oil, $457 \mathrm{mg}, 4 \mathrm{mmol}$) and dry THF (10 mL) was added dropwise a solution of $7 \mathrm{a}(442 \mathrm{mg}, 3.2 \mathrm{mmol}$) in dry THF (3 mL). The resulting mixture was stirred for 1 h , and $\mathrm{CH}_{3} 1(1 \mathrm{~mL}, 15$ mmol) was added dropwise. After 1 h , the reaction mixture was poured into water (10 mL) with caution and extracted from EtOAc (3×15 mL). The combined extract was washed with brine (15 mL) and dried over anhydrous MgSO_{4}. After solvent evaporation, the crude product was purified by flash chromatography (petroleum ether/EIOAc, 9:1) to give 3-methoxy-3-methyl-1-vinylcyclohexene (7b) as a colorless oil: 298 $\mathrm{mg}, 67.6 \%$; ${ }^{\prime} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.39(\mathrm{dd}, J=10.66,17.65$ $\mathrm{Hz},=\mathrm{CHC}=$), $5.63(\mathrm{br}, \mathrm{s}, \mathrm{C}=\mathrm{CH}), 5.23(\mathrm{~d}, J=17.55 \mathrm{~Hz}, \mathrm{C}=\mathrm{CHH})$, $5.07(\mathrm{~d}, J=10.78 \mathrm{~Hz},=\mathrm{CH} H), 3.24\left(\mathrm{~s}, \mathrm{OCH}_{3}\right) 2.2-2.1$ and $1.97-1.44$ $(\mathrm{m}, 6 \mathrm{H}), 1.30\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ; \operatorname{IR}\left(\mathrm{CHCl}_{3}\right) 2950,1610,1455,1375,1110,1070$ cm^{-1}.
3-[(Trimethylsilyl)oxy]-3-methyl-1-vinylcyclohexene (7c), BSA (0.5 $\mathrm{mL}, 2 \mathrm{mmol}$) was added dropwise to neat ice-cooled alcohol $7 \mathrm{7a}(130 \mathrm{mg}$, 0.94 mmol) at $0^{\circ} \mathrm{C}$. Workup as described for the preparation of 6 c gave $3-[($ trimethylsilyl) oxy]-3-methyl-1-vinylcyclohexene (7c) as a colorless oil: $123 \mathrm{mg}, 66.7 \%$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.36$ (dd, $J=10.7$, $17.48 \mathrm{~Hz},=\mathrm{CHC}=$), 5.68 (br s, $\mathrm{C}=\mathrm{CH}$), 5.22 (d, $J=17.21 \mathrm{~Hz}$, $\mathrm{C}=\mathrm{CHH}), 5.06(\mathrm{~d}, J=10.74 \mathrm{~Hz},=\mathrm{CH} H), 2.4-2.0(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.79$ (m, 2 H), 1.7-1.5 (m, 2 H), $1.35(\mathrm{~s}, \mathrm{Me}), 0.13(\mathrm{~s}, 9 \mathrm{H}) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ 2950, $1610,1450,1030,910 \mathrm{~cm}^{-1}$.
Reaction of 3-Vinyl-2-cyclohexen-1-ol (6a) with \mathbf{N}-Phenylmaleimide, A solution of alcohol 6 ($256 \mathrm{mg}, 2.06 \mathrm{mmol}$) and N-phenylmaleimide ($357 \mathrm{mg}, 2.06 \mathrm{mmol}$) in dry benzene (4 mL) was stirred at room temperature for 3 days. ${ }^{1} \mathrm{H}$ NMR and TLC of the crude product showed the formation of three products. The reaction mixture was refluxed for 3 h , and the NMR of the crude product showed only two products, which were separated by radial chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /acetone, 19:1). The first fraction was a tricyclic lactone 13 ($242 \mathrm{mg}, 39.5 \%$) that was crystallized from acetone/water to give colorless needles, $\mathrm{mp} 240^{\circ} \mathrm{C}$. The second fraction was the anti alcohol 12a obtained as a foamy solid (207 $\mathrm{mg}, 33.8 \%$). When the reaction product was concentrated without reflux, the syn alcohol 11a was crystallized in the freezer. Crystals were filtered and washed with benzene to give pure 11a, mp 163-64 ${ }^{\circ} \mathrm{C}$.
11a: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55-7.3$ (m, PhH), 5.84 (br s, $\mathrm{C}=\mathrm{CH}), 4.34(\mathrm{brd}, \mathrm{CHOH}), 3.43(\mathrm{appt}, J=9.19 \mathrm{~Hz}, \mathrm{COCH}), 3.24$ (dt, $J=9.9$ and $3.23 \mathrm{~Hz}, \mathrm{COCHCH} 2$), $2.83(\mathrm{~m}, 2 \mathrm{H}), 2.6-2.4(\mathrm{~m}, 2 \mathrm{H}$), $2.2-1.5(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.90,177.99,134.66$, 132.39, 129.04, 128.39, 126.69, 119.97, 69.17, 41.02, 40.13, 36.69, 36.11, 33.25, 23.33, 20.99; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3300,1710,1600,1560,1390 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{3}$: $\mathrm{C}, 72.72 ; \mathrm{H}, 6.39 ; \mathrm{N}, 4.71$. Found: C , 72.52; H, 6.53; N, 4.74.

12a: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathbf{~ 7 . 6 - 7 . 2 ~ (m , ~ P h H) , ~} 5.65$ (br s, $\mathrm{C}=\mathrm{CH}), 4.16(\mathrm{~m}, \mathrm{CHOH}), 3.71(\mathrm{~m}, \mathrm{COCH}, \mathrm{OH}), 3.20$ (overlapping ddd, COCHCH), $2.51(\mathrm{~m}, 2 \mathrm{H}), 2.3-2.1(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.5(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8178.66,178.37,139.08,131.75,129.12$, 128.65, 126.69, 126.52, 118.32, 69.70, 44.55, 40.66, 39.54, 32.89, 31.61, 24.72, 22.11; IR $\left(\mathrm{CHCl}_{3}\right) 3450,1700,1390,1140 \mathrm{~cm}^{-1}$; high-resolution mass calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{3}\left(\mathrm{M}^{+}-\mathrm{H}\right)$ 296.1286, found 296.1274

13: 'H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.1$ (br s, NH), 7.7-7.1 (m, PhH), 5.76 (br s, $\mathrm{C}=\mathrm{CH}$), 4.78 (app d, $J=3.04 \mathrm{~Hz}, \mathrm{CHOCO}$), 3.43 ($\mathrm{dd}, J=5.7,2.8 \mathrm{~Hz}, \mathrm{CHCO}$), $3.04(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{dt}, J=8.5,2.8 \mathrm{~Hz}$, $\mathrm{NHCOCHCH} 2), 2.7-1.5$ (series of $\mathrm{m}, 8 \mathrm{H})$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3300,1745$, 1675, $1600,1550,1440 \mathrm{~cm}^{-1}$. Anal. Caled for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{3}: \mathrm{C}, 72.72$; H, 6.39; N, 4.71. Found: C, 72.66, H, 6.49; N, 4.63.

Reaction of 3-Methoxy-1-vinylcyclohexene (6b) with \boldsymbol{N}-Phenylmaleimide. A solution of methyl ether 6 b ($181 \mathrm{mg}, 1.31 \mathrm{mmol}$) and N phenylmaleimide ($266 \mathrm{mg}, 1.53 \mathrm{mmol}$) in dry benzene (3 mL) was stirred at room temperature for 3 days. The reaction mixture was concentrated, and the 'H NMR showed the formation of two adducts. The products were separated by radial chromatography (petroleum ether/ $/ \mathrm{CHCl}_{3}$ / acetone, $50: 48: 2$). The major adduct (12b) was obtained as a solid (309
$\mathrm{mg}, 75.86 \%$) that was crystallized from petroleum ether/EtOAc to give colorless crystals of $\mathbf{1 2 b}: \mathrm{mp} 96^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.6-7.2(\mathrm{~m}, \mathrm{PhH}), 5.64(\mathrm{br} \mathrm{s},=\mathrm{CH}), 4.33(\mathrm{ddd}, J=11.0,9.84,4.58 \mathrm{~Hz}$, CHOCH_{3}), 3.65 (dd, $J=8.52,5.9 \mathrm{~Hz}, \mathrm{COCH}$), $3.51\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 3.26$ (overlapping dt, $\mathrm{CH}_{2} \mathrm{CHCO}$), $2.71(\mathrm{~m},=\mathrm{CHCHH}), 2.6-1.2(\mathrm{~m}, 8 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.13,177.54,140.62,129.06,128.48$, 126.52, 119.01, 76.38, 56.4, 43.36, 40.60, 29.13, 27.64, 25.18, 20.19; IR $\left(\mathrm{CHCl}_{3}\right) 1700,1490,1380,1320 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3}: \mathrm{C}$, 73.71 ; H, 6.75; N, 4.50. Found: C, 73.32; H, 6.69; N, 4.55.

The minor adduct (11b) which was crystallized from petroleum ether/EtOAc as colorless crystals, was isolated along with a trace of N phenylmaleimide: $28.2 \mathrm{mg}, 6.9 \%$; mp $120^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}) $\delta 7.5-7.2(\mathrm{~m}, \mathrm{PhH}), 5.64(\mathrm{br} \mathrm{s},=\mathrm{CH}), 3.90(\mathrm{~d}, J=2.33 \mathrm{~Hz}$, CHOCH_{3}), $3.32(\mathrm{appt}, J=9.7 \mathrm{~Hz}, \mathrm{COCH}), 3.14(\mathrm{dt}, J=4.4,9.9 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CHCO}\right), 3.03\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 2.75(\mathrm{~d}, J=9.59 \mathrm{~Hz}$, allylic CH$), 2.66$ (br d, $J=18.03 \mathrm{~Hz},=\mathrm{CHCHH}$), $2.49-1.2\left(\mathrm{~m}, 7 \mathrm{H}\right.$); ${ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.18,134.21,129.14,128.88,127.95,126.04,118.22$, $76.61,55.36,40.72,39.34,36.96,36.69,27.26,23.42,21.24 ; 1 \mathrm{R}\left(\mathrm{CHCl}_{3}\right)$ $1700,1490,1440,1380 \mathrm{~cm}^{-1}$; high-resolution mass caled for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3}$ $\left(\mathrm{M}^{+}+\mathrm{H}\right) 312.1599$, found 311.1527

Conversion of 12 a to $\mathbf{1 2 b}$, A mixture of alcohol adduct 12a (50 mg , $0.16 \mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{O}(42 \mathrm{mg}, 0.18 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(23 \mathrm{mg}, 0.16 \mathrm{mmol})$, Mel ($0.4 \mathrm{~mL}, 22.8 \mathrm{mmol}$), and dry $\mathrm{CHCl}_{3}(2 \mathrm{~mL}$) was stirred at room temperature for 4 days. After filtration and solvent evaporation, the crude mass was subjected to PLC separation (petroleum ether/EtOAc, 1:1) to give $\mathbf{1 2 b}$ ($19 \mathrm{mg}, 36.4 \%$) and 9.3 mg of recovered alcohol 12a.

Reaction of 3 -[(Trimethylsilyl)oxy $]-1$-vinylcyclohexene ($6 c$) with \boldsymbol{N} Phenylmaleimide (5), A solution of silyl ether 6 c ($355 \mathrm{mg}, 1.81 \mathrm{mmol}$) and N-phenylmaleimide ($365.5 \mathrm{mg}, 2.11 \mathrm{mmol}$) in dry benzene (6 mL) was stirred at room temperature for 4 days. Solvent was removed, and the ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture showed the formation of two adducts. The crude reaction mixture was purified by radial chromatography $\left(\mathrm{CHCl}_{3} /\right.$ acetone, $\left.95: 5\right)$. The inseparable mixture of diastereomers 11c and 12c was obtained as a colorless oil ($471 \mathrm{mg}, 70.5 \%$). Major adduct 12c: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.5-7.2(\mathrm{~m}, \mathrm{PhH})$, 5.63 (br s, $=\mathrm{CH}$), 4.89 (ddd, $J=11.2,9.4,4.7 \mathrm{~Hz}, \mathrm{CHOSiCH} 3$), 3.54 (dd, $J=8.58,5.25 \mathrm{~Hz}, \mathrm{COCH}$), 3.26 (m, $\mathrm{CH}_{2} \mathrm{CHCO}$), 2.71 (m, $=$ CHCHH), 2.4-1.3 (m, 8 H), 0.22 (s, SiMe_{3}).

Hydrolysis of Silyl Adduct Mixture of 11c and 12c, To a methanolic solution (10 mL) of the silylated adduct mixture of 11 c and $12 \mathrm{c}(450 \mathrm{mg}$, 1.21 mmol) were added few drops of saturated oxalic acid solution. After 2 h of being stirred at room temperature, solvent was removed and the resulting product was dried. The crude mass was passed through a short column of Florisil and eluted with EtOAc. Removal of solvent gave a pasty mass ($281 \mathrm{mg}, 78 \%$). The ${ }^{1} \mathrm{H}$ NMR of the product was identical with anti alcoholic adduct 12a. A trace amount of tricyclic lactone 13 was also detected in the ${ }^{1} \mathrm{H}$ NMR spectrum.

Reaction of 3-Vinyl-2-cyclohexen-1-ol (6a) with Dimethyl Acetylenedicarboxylate (DMAD), A solution of alcohol 6 ($136.4 \mathrm{mg}, 1.1 \mathrm{mmol}$) and dimethyl acetylenedicarboxylate ($213 \mathrm{mg}, 1.5 \mathrm{mmol}$) in dry benzene (4 mL) was kept under reflux for $40 \mathrm{~h} .{ }^{1} \mathrm{H}$ NMR of the concentrated product showed the formation of two adducts along with some aromatic products. The mixture was separated by radial chromatography $\left(\mathrm{CHCl}_{3}\right)$ to furnish major adduct 15 a ($189.37 \mathrm{mg}, 64.37 \%$) and minor adduct 14a ($52.6 \mathrm{mg}, 18 \%$)

Major adduct 15a: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.50$ (br s, $\mathrm{C}=$ CH), $3.79\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 3.82\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 3.51$ (overlapping ddd, CHOH), $3.16(\mathrm{~m},=\mathrm{CHCHH}$ and allylic CH), $2.9(\mathrm{~m},=\mathrm{CHCHH}), 2.44-1.22$ $(\mathrm{m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.23,168.57,137.81,135.95$, $131.20,117.05,76.33,53.23,53.03,49.48,37.19,35.39,28.47,25.95$; high-resolution mass calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{5}\left(\mathrm{M}^{+}-\mathrm{H}\right) 265.1075$, found 265.1071 .

Minor adduct 14a: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.65$ (br s, $\mathrm{C}=$ CH), 4.11 (br s, CHOH), $3.9\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 3.86\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 3.3-2.9(\mathrm{~m}$, $=\mathrm{CHCH}_{2}$ and allylic CH), 2.6-1.57 (m, 7 H); high-resolution mass calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{5}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 267.1232, found 267.1239.

Reaction of 3-[(Trimethylsilyl)oxy]-1-vinylcyclohexene (6c) with DMAD (9), A solution of silyl ether 6c ($202 \mathrm{mg}, 1.03 \mathrm{mmol}$) and dimethyl acetylenedicarboxylate ($257 \mathrm{mg}, 1.81 \mathrm{mmol}$) in dry benzene (4 mL) was kept under reflux for 3 days. ${ }^{1} \mathrm{H}$ NMR of the concentrated crude product showed the formation of two adducts. The products were separated by flash chromatography $\left(\mathrm{CHCl}_{3}\right)$ to give minor adduct $\mathbf{1 4 b}$ ($7.25 \mathrm{mg}, 2 \%$), major adduct 15 b ($172.52 \mathrm{mg}, 49.5 \%$), and a mixture of 14b and 15b ($15.15 \mathrm{mg}, 4.35 \%$).

Major adduct 15b: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.46(\mathrm{br} \mathrm{s},=\mathrm{CH})$, $3.78\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 3.77\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 3.43(\mathrm{dt}, J=10.4,3.99 \mathrm{~Hz}, \mathrm{CHO}$ SiMe_{3}), $3.20(\mathrm{~m},=\mathrm{CHCHH}$ and allylic CH$), 2.83(\mathrm{~m},=\mathrm{CHCHH})$, $2.28-1.25$ (series of $\mathrm{m}, 6 \mathrm{H}$), $0.11\left(\mathrm{~s}, \mathrm{SiMe}_{3}\right)$; $1 \mathrm{R}\left(\mathrm{CHCl}_{3}\right) 1725,1440$, 1270, $1105 \mathrm{~cm}^{-1}$

Minor adduct 14b: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 5.53 (br s, $=\mathrm{CH}$), 4.2 (br s, CHOSiMe 3), $3.8\left(\mathrm{~s}, 2 \mathrm{OCH}_{3}\right), 3.12(\mathrm{~m},=\mathrm{CHCHH}$ and allylic CH), 2.9 ($\mathrm{m},=\mathrm{CHCH} H$), 2.35-1.57 (series of $\mathrm{m}, 6 \mathrm{H}$), 0.063 (s, SiMe_{3}); high-resolution mass calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{Si}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 339.1627, found 339.1577 .

Hydrolysis of Silyl Adduct 15b, A methanolic solution (1 mL) of the silylated adduct $\mathbf{1 5 b}$ ($30 \mathrm{mg}, 0.08 \mathrm{mmol}$) with few drops of saturated oxalic acid solution was stirred at room temperature for 0.5 h . Similar workup as described for the hydrolysis of 11c and 12c gave adduct alcohol 15a ($19.7 \mathrm{mg}, 83.5 \%$).

Reaction of 3-Vinyl-2-cyclohexen-1-ol (6a) with 4-Phenyl-1,2,4-tria-zoline-3,5-dione (10), A solution of alcohol $6 \mathrm{a}(92.7 \mathrm{mg}, 0.74 \mathrm{mmol})$ in 2 mL of dry THF/CH2Cl Cl_{2} (1:1) was added dropwise to a solution (2 mL) of 4-phenyl-1,2,4-triazoline-3,5-dione ($130 \mathrm{mg}, 0.74 \mathrm{mmol}$) in dry THF $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1) at $-78^{\circ} \mathrm{C}$. The resulting solution was stirred for 15 min, the cooling bath was removed, and the solution was stirred for an additional 15 min . The solvent was removed, and ${ }^{1} \mathrm{H}$ NMR showed the formation of a single adduct. The concentrated product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 mL) and passed through a short column of silica gel. The column was eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and on solvent removal the cycloadduct 16 was obtained as a solid ($179 \mathrm{mg}, 80.9 \%$). The adduct was crystallized from water/acetone to give white crystalline solid (mp 205-206 ${ }^{\circ} \mathrm{C}$). Adduct 16: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58-7.3(\mathrm{~m}, \mathrm{PhH}), 5.76$ (br s, $=\mathrm{CH}$), $5.34(\mathrm{~d}, J=3.21 \mathrm{~Hz}, \mathrm{OH}), 4.32(\mathrm{~d}, J=8.79$, allylic CH), 4.18 (overlapping qd, $=\mathrm{CHCH}_{2} \mathrm{~N}$), 3.81 (m, CHOH), 2.46 (m, 1 H), $2.25(\mathrm{~m}, 1 \mathrm{H}), 1.9(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.07,129.28,129.24,128.48,125.79,125.72$, 125.67, $114.46,74.26,64.2,43.0,34.07,33.94,24.15 ; 1 \mathrm{R}\left(\mathrm{CHCl}_{3}\right) 3350$, 1700, 1499, $1460 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}: \mathrm{C}, 64.2 ; \mathrm{H}, 5.68$; N, 14.04. Found: C, 63.96; H, 5.80; N, 13.87

Reactions of 3-Vinyl-1-methyl-2-cyclohexen-1-ol (7a) with \boldsymbol{N}. Phenylmaleimide, A solution of alcohol 7a ($226 \mathrm{mg}, 1.63 \mathrm{mmol}$) and N-phenylmaleimide ($283 \mathrm{mg}, 1.63 \mathrm{mmol}$) in dry benzene (3 mL) was stirred at room temperature. After a few hours, the tricyclic lactone 19 started to separate out as a white solid. The reaction was continued for 3 days. The crude mixture was concentrated, and ${ }^{1} \mathrm{H}$ NMR of the mixture showed the formation of two products. To the concentrated product was added benzene (5 mL), and the insoluble lactone 19 was filtered, washed with benzene, and crystallized from acetone/water as colorless needles, mp $213^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR of the mother liquor showed a mixture of two adducts, which were separated by PLC (petroleum ether/EtOAc, 3:1) to give the tricyclic lactone 19 (19 mg , combined yield 66.9%) and the minor adduct alcohol 18 a ($27 \mathrm{mg}, 5.3 \%$)

Lactone 19: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.1$ (br s, NH), 7.7-7.1 (m, PhH), 5.75 (br s, $\mathrm{C}=\mathrm{CH}$), 3.73 (dd, $J=5.75,2.8 \mathrm{~Hz}, \mathrm{COCH}), 2.92$ (dt, $J=8.5,2.75 \mathrm{~Hz}, \mathrm{NHCOCHCH} 2$), 2.82 (br s, OCCHCH), 2.8-1.5 (series of $\mathrm{m}, 8 \mathrm{H}$), $1.54\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ; 1 \mathrm{R}\left(\mathrm{CHCl}_{3}\right) 3305,1740,1670,1600$, 1555, $1445 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3}: \mathrm{C}, 73.31 ; \mathrm{H}, 6.75 ; \mathrm{N}$, 4.50. Found: C, 73.54; H, 6.70; N, 4.52.

Minor adduct 18a: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.6-7.3$ (m, PhH), $5.74(\mathrm{br} \mathrm{s}, \mathrm{C}=\mathrm{CH}), 4.76(\mathrm{~s}, \mathrm{OH}), 3.68(\mathrm{app} \mathrm{t}, J=8.9 \mathrm{~Hz}, \mathrm{COCH}), 3.12$ (ddd, $J=15.8,8.9,6.9 \mathrm{~Hz}, \mathrm{COCHCH}$), $2.95(\mathrm{~d}, J=9.41 \mathrm{~Hz}$, allylic CH), $2.59(\mathrm{~m}, \mathrm{COCHCHH}), 2.41-1.39(\mathrm{~m}, 6 \mathrm{H}), 1.24\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right) 3420,1700,1600,1490,1395 \mathrm{~cm}^{-1}$; high-resolution mass calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{3}\left(\mathrm{M}^{+}-\mathrm{H}\right) 310.1443$, found 310.1481 .

X-ray Data for 19. The crystals are monoclinic, space group $P_{2} 1 / c$ (No. 14), with dimensions $A=5.393$ (2) $\AA, b=14.504$ (2) $\AA, c=19.776$ (2) \AA, and $\rho=1.35 \mathrm{~g} / \mathrm{cm}^{3}$ for $Z=4 \mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3}, M=311.38$. The intensity data were measured with a sealed-tube diffractometer (Mo $\mathrm{K} \alpha$ resolution). The crystal dimensions were $0.70 \times 0.30 \times 0.20 \mathrm{~cm}^{3}$. There were 2703 unique reflections measured for $\theta<25^{\circ}$, of which the 1973 with $I>3.0$ s I were used for refinement. The data was reduced and the structure solved and refined with use of the SDP package. The solution was obtained by direct methods procedures with MULTAN followed by full-matrix least-squares refinement. Hydrogen atoms were included in the final cycles. The final discrepancy indices are $R=0.040$ and $R_{w}=$ 0.039 .

Reaction of 3-Methoxy-3-methyl-1-vinylcyclohexene (7b) with \boldsymbol{N} Phenylmaleimide, A solution of methyl ether $\mathbf{7 b}(290 \mathrm{mg}, 1.9 \mathrm{mmol})$ and N-phenylmaleimide ($330 \mathrm{mg}, 1.9 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ was kept under high-pressure apparatus for 5 days. The reaction mixture was concentrated, and the ${ }^{1} \mathrm{H}$ NMR of the mixture showed the formation of two products. The concentrated mixture was dissolved in a minimum amount of EtOAc and was cooled overnight in the freezer. The major adduct 18b crystallized out as a solid, which was filtered (234 mg) and was recrystallized from petroleum ether/EtOAc to furnish colorless crystals (mp $122^{\circ} \mathrm{C}$). The mother liquor was concentrated and subjected to separation by radial chromatography (petroleum ether/ $\mathrm{CHCl}_{3} /$ acetone, $50: 48: 2$) to give an additional amount of $\mathbf{1 8 b}$ (56.1 mg , combined yield 46.9%).

Major product 18b: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.6-7.24$ (m, PhH), 5.7 ($\mathrm{br} \mathrm{s}, \mathrm{C}=\mathrm{CH}$), 3.49 (dd, $J=8.39,5.49 \mathrm{~Hz}, \mathrm{COCH}$), 3.32 (dt, $\left.J=8.7,2.16 \mathrm{~Hz}, \mathrm{COCHCH}_{2}\right), 3.23\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 2.79(\mathrm{ddd}, J=16.17$, $6.08,1.98 \mathrm{~Hz},=\mathrm{CHCHH}), 2.63(\mathrm{app} \mathrm{d}, J=5.35 \mathrm{~Hz}$, allylic CH), $2.46-1.39(\mathrm{~m}, 7 \mathrm{H}), 1.59\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 179.09, 177.56, 140.27, 132.14, 129.16, 128.52, 126.42, 119.81, 76.78, $48.5,45.65,42.14,40.95,31.81,31.15,24.02,21.39,20.31$; IR $\left(\mathrm{CHCl}_{3}\right)$ 1710, $1500,1450,1390 \mathrm{~cm}^{-1}$; high-resolution mass calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{3}$ ($\left.\mathrm{M}^{+}+\mathrm{H}\right) 326.1756$, found 326.1785 .

X-ray Data, The crystals are triclinic, space group $P 1$, with $a=7.62$ (4) $\AA, b=9.37$ (6) $\AA, c=12.33$ (3) \AA, and $\rho_{\text {calc }}=1.28 \mathrm{~g} \mathrm{~cm}^{-3}$ for Z $=2 \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3}, M=325.41$. The intensity data were measured on a rotation anode diffraciometer ($\mathrm{Cu} \mathrm{K} \alpha$ radiation). The size of the crystal used for data collection was approximately $0.2 \times 0.3 \times 0.5 \mathrm{~mm}$. A total of 2760 independent reflections were measured for $\theta<60^{\circ}$, of which 2333 were used for structure refinement ($I>3.0 \sigma I$). The siructure was solved by a multisolution procedure (SDP software) and was refined by full-matrix least squares. In the final refinement, the hydrogen atoms were added and included in the structure factors but their parameters were not refined. The final discrepancy indices are $R=0.109$ and R_{w} $=0.109$ and 0.112 for 2333 observed reflections.

The other fraction was the minor adduct 17 b ($115 \mathrm{mg}, 18.6 \%$), which was isolated along with a trace of NPM. Minor adduct 17b: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.6-7.3(\mathrm{~m}, \mathrm{PhH}), 5.7(\mathrm{br} \mathrm{s}, \mathrm{C}=\mathrm{CH}), 3.46$ (dd, $\left.J=8.97,7.59 \mathrm{~Hz}, \mathrm{COCH}), 3.32(\mathrm{dt}, J=8.3,3.44 \mathrm{~Hz}, \mathrm{COCHCH})_{2}\right)$, $3.13\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 2.8(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{app} \mathrm{d}, J=7.69 \mathrm{~Hz}$, allylic CH$)$, 2.5-1.4 (m, 7 H), $1.38\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 1710,1495,1450,1385$ cm^{-1}; high-resolution mass calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{3}\left(\mathrm{M}^{+}+\mathrm{H}\right) 326.1756$, found 326.1686 .

Reaction of 3-[(Trimethylsilyl)oxy]-3-methyl-1-vinylcyclohexene (7c) with \boldsymbol{N}-Phenylmaleimide, A solution of silyl ether $7 \mathrm{c}(123 \mathrm{mg}, 0.59$ mmol) and N-phenylmaleimide ($102 \mathrm{mg}, 0.59 \mathrm{mmol}$) in dry benzene (2 mL) was stirred for 5 days. The reaction mixture was concentrated, and the ${ }^{1} \mathrm{H}$ NMR showed the formation of two products. PLC separation (petroleum ether/EtOAc, 8:2) furnished two fractions. The major fraction was a mixture of adducts 17 c and 18 c ($113 \mathrm{mg}, 50 \%$), which could not be further separated. The second fraction was the unreacted NPM (37 mg).

Hydrolysis of Silyl Adduct Mlxture of 17c and 18c, To a methanolic solution (2 mL) of a silyl adduct mixture of 17 c and $18 \mathrm{c}(113 \mathrm{mg}, 0.29$ mmol) was added a few drops of saturated oxalic acid solution, and the solution was stirred for 0.5 h . Solvent was removed, and the resulting mass was dried under vacuum. The crude mixture was separated by PLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 9: 1\right)$ to give lactone $19(16.1 \mathrm{mg}, 17.5 \%)$ and anti alcohol 18a ($68 \mathrm{mg}, 74.1 \%$).

Lactonization of 18a, A methanolic solution (1 mL) of the anti alcohol 18 a ($27 \mathrm{mg}, 0.08 \mathrm{mmol}$) with a few drops of saturated oxalic acid solution was kept under reflux for 72 h . Solvent was removed, and the crude mixture was purified by passing through a shori column of Florisil and by eluting with EtOAc. Evaporation of solvent furnished a pasty mass, and ${ }^{1} \mathrm{H}$ NMR showed a mixture of products. The major product was identical with the tricyclic lactone 19. The mixture was not further separated.

Acknowledgment, This research was supported by Grant CA 37359 from the NCI of DHHS. NMR instruments used were obtained through Grants NSF PCM111745 and NIH RR 03214. We thank Professor L. E. Overman for a preprint of his paper.

Tandem Anionic [3,3] Sigmatropy and $\mathrm{S}_{\mathrm{N}}{ }^{\prime}$ Displacement. New Synthetic Technology for the Construction of Hydroazulenone and Related Frameworks

Leo A, Paquette ${ }^{*}$ and Yao-Jun Shi ${ }^{1}$
Contribution from the Evans Chemical Laboratories, The Ohio State University, Columbus, Ohio 43210. Received April 27, 1990

Abstract

Transmetalation of the 3-(trimethylstannyl)-2-norcarenes 9 and $\mathbf{2 8 b}$ provides for the acquisition of optically pure bicyclic vinyllithium derivatives. These have been added to (\pm)-2-chlorocyclohexanone and the resultant cis-chlorohydrins have been exposed to excess vinylmagnesium bromide under conditions which promote pinacol rearrangement and allow for subsequent 1,2 -addition to the newly liberated carbonyl group. Following analysis of the response of divinyl carbinols 12 and 13 to anionic oxy-Cope rearrangement, the title process has been examined for 31-34. The precise conformational demands have been analyzed for each example. To some extent these are a function of the usual energetic advantages that accrue to chairlike conformations. However, other factors clearly contravene. These capabilities allow in turn for both syn and anti $S_{N}{ }^{\prime}$ displacement of methoxide ion. The sequential operation of a [3,3] sigmatropic step and $S_{N}{ }^{\prime}$ displacement is shown to be a powerful tool for rapid hydroazulenone construction.

Hydroazulenoid ring systems are structural units frequently encountered in naturally occurring substances such as the guaianolides and pseudoguaianolides. ${ }^{2}$ Due to the high level of interest in these bioactive molecules ${ }^{3}$ and the well-recognized problems associated with medium-ring construction, elaboration of these often richly functionalized target molecules has come to be regarded as a challenging and attractive synthetic undertaking.

[^4]Achievements in the last 15 years have been truly impressive, culminating inter alia in total syntheses of bulnesol, ${ }^{4}$ carpesiolin, ${ }^{5}$ confertin, ${ }^{6}$ cyclocolorenone, ${ }^{7}$ damsin, ${ }^{8}$ damsinic acid, ${ }^{9}$ estafiatin, ${ }^{10}$
(4) (a) Andersen, N. H.; Uh, H. Synth. Commun. 1973, 3, 115. (b) Heathcock, C. H.; Ratcliffe, R.J. Am. Chem. Soc. 1971, 93, 1746.
(5) Kok, P.; DeClercq, P.; Vandewalle, M. J. Org. Chem. 1979, 44, 4553.
(6) (a) Marshall, J. A.; Ellison, R. H. J. Am. Chem. Soc. 1976, 98, 4312. (b) Semmelhack, M. F.; Yamashita, A.; Tomesch, J. C.; Hirotsu, K. Ibid. 1978, 100, 5565. (c) Heathcock, C. H.; Delmar, E. G.; Graham, S. L. Ibid. 1982, 104, 1907. (d) Wender, P. A.; Eissenstat, M. A.; Filosa, M. P. Ibid. 1979, 40, 1656.
(7) Caine, D.; Gupton, J. T. J. Org. Chem. 1975, 40, 1656.
(8) (a) Kretchmer, R. A.; Thompson, W. J. J. Am. Chem. Soc. 1976, 98, 3379. (b) Grieco, P. A.; Ohfune, Y.; Majetich, G. Ibid. 1977, 99, 7393. (c) Roberts, M. R.; Schlessinger, R. H. Ibid. 1979, 101, 7627.

[^0]: (1) (a) Fordham University. S.C.D. on sabbatical leave (1982-1983) from Hans Raj College, Delhi University, Delhi, India. (b) Hunter College/ CUNY. For correspondence concerning the X-ray structural work, contact G.J.Q. (c) Enraf Nonius.
 (2) For recent reviews see: (a) Helmchen, G.; Karge, R.; Weetman, J. In Modern Synthetic Methods; Scheffold, R., Ed.; Springer Verlag: New York, 1986; p 261. (b) Paquette, L. A. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic: New York, 1984; Vol. 3B, p 445.
 (3) Houk, K. N.; Moses, S. R.; Wu, Y. D.; Rondan, N. G.; Jager, V.; Schohe, R.; Fronczek, F. R. J. Am. Chem. Soc. 1984, 106, 3380.
 (4) Kahn, S. D.; Hehre, W. J. J. Am. Chem. Soc. 1987, $109,663$.
 (5) (a) Franck, R. W.; Argade, S.; Subramanian, C. S.; Frechet, D. M. Tetrahedron Lett. 1985, 26, 3187. (b) Franck, R. W.; John, T. V. J. Org. Chem. 1983, 48, 3269. (c) Tripathy, R.; Franck, R. W.; Onan, K. D. J. Am. Chem. Soc. 1988, 110, 3257.
 (6) (a) McDougal, P.; Rico, J. G.; Van Derveer, D. J. Org. Chem. 1986, 51, 4492. (b) McDougal, P.; Jump, J. M.; Rojas, C.; Rico, J. G. Tetrahedron Lett. 1989, 30, 3897.
 (7) (a) Kozikowski, A. P.; Nieduzak, T. R.; Springer, J. P. Tetrahedron Lett. 1986, 27, 819. (b) Kozikowski, A. P.; Jung, S. H.; Springer, J. P. J. Chem. Soc., Chem. Commun. 1986, 1350. (c) Kozikowski, A. P.; Nieduzak, T. R.; Konoike, T.; Springer, J. P. J. Am. Chem. Soc. 1987, 109, 5167 . (d) Kozikowski, A. P.; Konoike, T.; Nieduzak, T. R. J. Chem. Soc., Chem. Commun. 1988, 167.
 (8) Fleming, 1.; Sarkar, A. K.; Doyle, M. J.; Raithby, P. R. J. Chem. Soc., Perkin Trans. 1 1989, 2023.

[^1]: (15) Kaila, N.; Franck, R. W.; Dannenberg, J. J. J. Org. Chem. 1989, 54, 4206.
 (16) (a) Strekowski, L.; Kong, S.; Battiste, M. A. J. Org. Chem. 1988, 53, 901. (b) Hayakawa, K.; Ohsuti, S.; Kanematsu, K. Tetrahedron Lett. 1986, 27, 947.
 '(17) Grewe, R.; Nolic, E.; Rotzoll, R.-H. Chem. Ber. 1956, 89, 600.

[^2]: (18) Hall, S. E.; Roush, R. J. Org. Chem. 1982, 47, 4611.

[^3]: (19) Kawamata, T.; Harimaya, K.; litaka, Y.; Inayama, S. Chem. Pharm. Bull. 1989, 37, 2307.
 (20) Paquette, L. A.; Lin, H.-S.; Gunn, B. P.; Coghlan, M. J. J. Am. Chem. Soc. 1988, 110, 5818.
 (21) Hirsch, J. A. Top. Stereochem. 1967, l, 199.
 (22) Forster, H.; Vogtle, F. Angew. Chem., Int. Ed. Engl. 1977, 429. It is unforiunate that there is no n value for the (TMS)O group.

[^4]: (1) The Ohio State University Postdoctoral Fellow, 1988-1989.
 (2) (a) Heathcock, C. H. In Total Synthesis of Natural Products; ApSimon, J., Ed.; John Wlley and Sons, Inc.: New York, 1973; Vol. 2. (b) Heathcock, C. H.; Graham, S. L.; Pirrung, M. C.; Plavac, F.; White, C. T. lbid. 1983; Vol. 5.
 (3) (a) Fischer, N. H.; Olivier, E. J.; Fischer, H. D. Fortschr. Chem. Org. Naturst. 1979, 38, 47. (b) Rodriguez, E.; Towers, G. H. N.; Mitchell, J. C Phytochemistry 1976, 15, 1573.

